skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ruiz, Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One-way quantum repeaters where loss and operational errors are counteracted by quantum error-correcting codes can ensure fast and reliable qubit transmission in quantum networks. It is crucial that the resource requirements of such repeaters, for example, the number of qubits per repeater node and the complexity of the quantum error-correcting operations are kept to a minimum to allow for near-future implementations. To this end, we propose a one-way quantum repeater that targets both the loss and operational error rates in a communication channel in a resource-efficient manner using code concatenation. Specifically, we consider a tree-cluster code as an inner loss-tolerant code concatenated with an outer 5-qubit code for protection against Pauli errors. Adopting flag-based stabilizer measurements, we show that intercontinental distances of up to 10,000 km can be bridged with a minimized resource overhead by interspersing repeater nodes that each specialize in suppressing either loss or operational errors. Our work demonstrates how tailored error-correcting codes can significantly lower the experimental requirements for long-distance quantum communication. 
    more » « less
  2. This study aims to investigate the collaboration processes of immigrant families as they search for online information together. Immigrant English-language learning adults of lower socioeconomic status often work collaboratively with their children to search the internet. Family members rely on each other’s language and digital literacy skills in this collaborative process known as online search and brokering (OSB). While previous work has identified ecological factors that impact OSB, research has not yet distilled the specific learning processes behind such collaborations. Design/methodology/approach: For this study, the authors adhere to practices of a case study examination. This study’s participants included parents, grandparents and children aged 10–17 years. Most adults were born in Mexico, did not have a college-degree, worked in service industries and represented a lower-SES population. This study conducted two to three separate in-home family visits per family with interviews and online search tasks. Findings: From a case study analysis of three families, this paper explores the funds of knowledge, resilience, ecological support and challenges that children and parents face, as they engage in collaborative OSB experiences. This study demonstrates how in-home computer-supported collaborative processes are often informal, social, emotional and highly relevant to solving information challenges. Research limitations/implications: An intergenerational OSB process is different from collaborative online information problem-solving that happens between classroom peers or coworkers. This study’s research shows how both parents and children draw on their funds of knowledge, resilience and ecological support systems when they search collaboratively, with and for their family members, to problem solve. This is a case study of three families working in collaboration with each other. This case study informs analytical generalizations and theory-building rather than statistical generalizations about families. Practical implications: Designers need to recognize that children and youth are using the same tools as adults to seek high-level critical information. This study’s model suggests that if parents and children are negotiating information seeking with the same technology tools but different funds of knowledge, experience levels and skills, the presentation of information (e.g. online search results, information visualizations) needs to accommodate different levels of understanding. This study recommends designers work closely with marginalized communities through participatory design methods to better understand how interfaces and visuals can help accommodate youth invisible work. Social implications: The authors have demonstrated in this study that learning and engaging in family online searching is not only vital to the development of individual and digital literacy skills, it is a part of family learning. While community services, libraries and schools have a responsibility to support individual digital and information literacy development, this study’s model highlights the need to recognize funds of knowledge, family resiliency and asset-based learning. Schools and teachers should identify and harness youth invisible work as a form of learning at home. The authors believe educators can do this by highlighting the importance of information problem solving in homes and youth in their families. Libraries and community centers also play a critical role in supporting parents and adults for technical assistance (e.g. WiFi access) and information resources. Originality/value: This study’s work indicates new conditions fostering productive joint media engagement (JME) around OSB. This study contributes a generative understanding that promotes studying and designing for JME, where family responsibility is the focus. 
    more » « less
  3. null (Ed.)